Prof. Dr. Alfred Toth

Zwischen relationaler Einbettung und Copossession

1. Zur Definition relationaler Einbettungszahlen (vgl. Toth 2012) benötigt man eine beliebige Dichotomie

$$D := [x, y]$$

und eine Abbildung, die das eine Element von D auf das andere abbildet

$$1 := x(y) = y \to x.$$

Diese Abbildung 1 werde nun in eine potentiell unendliche Hierarchie von Stufen der Form $[1_n]$ eingebettet, wobei für die Grundstufe gilt

$$1 = [1_0] := 1_0$$
.

Eine REZ ist somit ein Paar

$$REZ = <1, _{n}]>,$$

und eine triadische Relation ist also gegeben durch

$${}^{3}R_{REZ} = [\omega, [\omega, 1], [[\omega, 1], 1]]]$$

mit
$$(\omega := 1)$$
, $([\omega, 1] = 1_{-1})$ und $([[\omega, 1], 1] = 1_{-2})$.

Damit erhalten wir folgende 3×3 REZ-Matrix:

2. Eine Sättigungszahl ist nach Toth (2025a) eine komplexe Zahl

$$S = [K, S],$$

darin K für Kategorienzahl und S für Sättigungsgrad steht. Kategorienzahlen sind genau die gesättigten Zahlen, d.h. die Subzeichen der Diskriminanten der semiotischen Matrix

$$(1.1) = [1]$$

$$(2.2) = [2]$$

$$(3.3) = [3].$$

Dann haben wir

$$(1.2) = [1,+1]$$
 $(2.1) = [2,-1]$

$$(1.3) = [1,+2]$$
 $(3.1) = [3,-2]$

$$(2.3) = [2,+1]$$
 $(3.2) = [3,-1].$ $3 \times 3 [K, S]-Matrix:$

Setzen wir [1] = 0, so bekommen wir eine 3×3 PC-Matrix

Setzen wir die Determinationsrelationen (vgl. Toth 2025b) ein, so erhalten wir die 3×3 D-Matrix

Damit haben wir vermöge dieser Isomorphien die folgenden Korrespondenzen zwischen Peircezahlen (Subzeichen), relationalen Einbettungszahlen, Sättigungszahlen, Determinationszahlen und possessiv-copossessiven Zahlen (vgl. Toth 2025c):

P	REZ	S	D	PC
(1.1)	$[\omega, \omega]$	[1]	L	P^1C^0
(1.2)	$[\omega, [\omega, 1]]$	[1,+1]	В	P^1C^{+1}
(1.3)	$[\omega, [[\omega, 1], 1]]$	[1,+2]	U	P1C+2
(2.1)	$[[\omega, 1], \omega]$	[2,-1]	В	P ² C ⁻¹
(2.2)	$[[\omega, 1], [\omega, 1]]$	[2]	L	P^2C^0
(2.3)	$[[\omega, 1], [[\omega, 1], 1]]$	[2,+1]	В	P^2C^{+1}
(3.1)	$[[[\omega,1],1]],\omega]$	[3,-2]	U	P ³ C ⁻²
(3.2)	$[[[\omega, 1], 1], [\omega, 1]]$	[3,-1]	В	P ³ C ⁻¹
(3.3)	$[[[\omega,1],1]],[[\omega,1],1]]$	[3]	L	P^3C^0

Literatur

- Toth, Alfred, Dreidimensionale relationale Einbettungszahlen. In: Electronic Journal for Mathematical Semiotics, 2012
- Toth, Alfred, Abbildung der Sättigungszahlen auf PC-Zahlen. In: Electronic Journal for Mathematical Semiotics, 2025a
- Toth, Alfred, Die semiotischen Determinationsrelationen. In: Electronic Journal for Mathematical Semiotics, 2025b
- Toth, Alfred, Strukturtheorie possessiv-copossessiver Zahlen. In: Electronic Journal for Mathematical Semiotics, 2025c

27.10.2025